Package index
Group Sequential CRT Sample Size Computation
For an overview of how to use the gsDesignCRT package, see vignette("example").
-
gsDesignCRT() - Compute stopping boundaries, maximum sample size, and expected sample sizes for a group sequential cluster randomized trial.
-
gsUpperCRT() - Boundary derivation for efficacy stopping only.
-
gsLowerCRT() - Boundary derivation for binding or non-binding futility stopping only.
-
gsBoundsCRT() - Boundary derivation for efficacy and binding or non-binding futility stopping.
-
gsProbabilityCRT() - Compute stopping boundary crossing probabilities.
-
gsSimContCRT() - Simulate group sequential cluster-randomized trial with continuous outcomes.
-
gsSimBinCRT() - Simulate group sequential cluster-randomized trial with binary outcomes
-
genContCRT() - Simulate cluster-randomized trial data with continuous outcomes
-
genBinCRT() - Simulate cluster-randomized trial data with binary outcomes
Spending Functions
For an overview of spending functions, see vignette("SpendingFunctionOverview").
-
spendingFunction() - Spending Function
-
sfLDOF()sfLDPocock() - Lan-DeMets Spending function overview
-
sfHSD() - Hwang-Shih-DeCani Spending Function
-
sfPower() - Kim-DeMets (power) Spending Function
-
sfExponential() - Exponential Spending Function
-
sfLogistic()sfBetaDist()sfCauchy()sfExtremeValue()sfExtremeValue2()sfNormal() - Two-parameter Spending Function Families
-
sfTDist() - t-distribution Spending Function
-
sfLinear()sfStep() - Piecewise Linear and Step Function Spending Functions
-
sfPoints() - Pointwise Spending Function
-
sfTruncated()sfTrimmed()sfGapped() - Truncated, trimmed and gapped spending functions
-
checkLengths()checkRange()checkScalar()checkVector()isInteger() - Utility functions to verify variable properties